Заняття 41.
1. Розвиток Землі, як й інших планет Сонячної системи, має свою тривалу геологічну історію. За цей час сформувалися її зовнішні оболонки: тверда (літосфера), рідка (гідросфера) і газоподібна (атмосфера).
Літосфера (від грец. літос - камінь і сфера - куля) - зовнішня тверда оболонка планети завтовшки 50-200 км. Вона складається з поверхневого шару осадочних порід (крейда, вапняк, кремнезем тощо), сформованого за участі живих істот, а також граніту (середній шар) і базальту (нижній шар).
Сукупність усіх водойм (океанів, морів, річок тощо) утворює водну оболонку Землі — гідросферу, яка займає майже 71% поверхні планети. Ця оболонка може бути завтовшки понад 11 км.
Газову оболонку, розташовану над поверхнею літосфери і гідросфери, називають атмосферою (від грец. атмос — пара), її нижню частину заввишки до 15-18 км (у помірних широтах - до 8-12 км) називають тропосферою (від грец. тропос - зміна). Тут міститься зважена в повітрі водяна пара. Внаслідок нерівномірного нагрівання поверхні Землі вона формує хмари, здатні пересуватись на значні відстані. Температура тропосфери, особливо її нижніх шарів, непостійна.
Над тропосферою розташована стратосфера (від лат. стратус - шар) заввишки 80 км. Біля верхньої межі цього шару виникає північне сяйво (свічення газів, спричинене потоком електричне заряджених частинок, які випромінює Сонце). В атмосфері на висотах між 7—8 км (над полюсами), 17— 18 км (над екватором) і 50 км сформувався особливий озоновий екран (від грец. озон - пахучий). До його складу входить озон (О3), який утворився під дією сонячної радіації з кисню (О2). Озоновий екран має виняткове значення для існування наземних біогеоценозів і біосфери в цілому, оскільки відбиває короткохвильове ультрафіолетове сонячне випромінювання, яке згубно діє на живу матерію.
Поняття «біосфера» (від грец. біос — життя) запропонував 1875 року австрійський учений Едуард Зюсс. Вчення про біосферу створив видатний український учений В.І. Вернадський. На його думку, біосфера не є окремою єдиною оболонкою Землі, це лише частина її геологічних оболонок, населених живими організмами. Живі організми поширені у верхніх шарах літосфери, нижніх атмосфери і по всій глибині гідросфери. У глиб літосфери живі організми можуть проникати на відносно незначні відстані (наприклад, на глибині 2—4 км переважно в нафтоносних пластах можуть мешкати лише деякі групи бактерій). Проникнення живих істот у глиб літосфери обмежене високою температурою (понад +100° С) гірських порід і підземних вод на глибинах 1,5—15 км. Поширення організмів в атмосфері (переважно спор і цист мікроорганізмів) обмежене озоновим екраном, оскільки вище нього майже все живе гине під дією космічного випромінювання.
Тож найбільшу концентрацію живих організмів спостерігають там, де умови їхнього існування найсприятливіші: на межі окремих геологічних оболонок Землі: літосфери і атмосфери, атмосфери і гідросфери, літосфери і гідросфери.
Отже, біосфера - це сукупність усіх біогеоценозів Землі, єдина глобальна екосистема вищого порядку.
2. Ще в першій половині XX століття В.І. Вернадський передбачав, що біосфера поступово розвиватиметься у ноосферу. Спочатку він розглядав ноосферу як особливу оболонку Землі, яка розвивається поза біосферою. Але згодом він дійшов висновку, що ноосфера (від грец. ноос — розум) — це новий стан біосфери, за якого визначальним фактором стає розумова діяльність людини. За В.І. Вернадським, під впливом наукової думки і людської праці біосфера поступово переходить у свій новий стан — ноосферу. Людство все більше відрізняється від інших компонентів біосфери як нова надпотужна геологічна сила. Завдяки науковій думці, втіленій у технічних досягненнях, людина опановує ті частини біосфери, куди раніше не проникала.
Ноосфері як якісно новому етапу в розвитку біосфери властивий тісний зв'язок законів природи і факторів, які визначають розвиток людського суспільства. Цей зв'язок опирається на науково обґрунтоване раціональне використання природних ресурсів, яке передбачає відновлюваність колообігу речовин і потоків енергії в окремих біогеоценозах і біосфері загалом. Характерною особливістю розвитку ноосфери є екологізація всіх сфер життя людини. Тому до розв'язання будь-яких проблем людина мас підходити з позицій екологічного мислення.
Отже, ноосфера — це якісно нова форма організації біосфери, яка формується внаслідок її взаємодії із людським суспільством і передбачає гармонійне співіснування природи і людини.
Сукупність усіх організмів нашої планети В.І. Вернадський назвав живою речовиною. Основними її характеристиками є сумарна біомаса, хімічний склад і енергія. Енергія живої речовини насамперед проявляється в здатності організмів до розмноження і поширення. Життя на нашій планеті відрізняється значною стійкістю до змін інтенсивності дії різних екологічних факторів. Так, у стані анабіозу організми здатні витримувати значні коливання температури (від абсолютного нуля до +100° С й вище), тиску (від сотих часток атмосфери до 1 000 атмосфер і більше на великих океанічних глибинах). Фактично живі організми відсутні лише в товщі льодовиків і в кратерах діючих вулканів.
Однією з властивостей живої речовини є її постійний обмін з довкіллям, під час якого через організми проходять різні хімічні елементи. Для здійснення процесів життєдіяльності живим істотам необхідні певні речовини і енергія, які вони дістають з довкілля, значно його змінюючи. Внаслідок постійного обміну речовин з навколишнім середовищем різні хімічні елементи надходять у живі організми, можуть у них накопичуватись і виходити у довкілля лише через деякий час або лише після їхньої загибелі.
Ви також пам'ятаєте, що зелені рослини виконують у біосфері космічну роль, вловлюючи енергію сонячного світла і перетворюючи її в енергію хімічних зв'язків, синтезованих ними органічних сполук. Сумарна первинна продукція автотрофних організмів у кінцевому підсумку визначає і біомасу біосфери в цілому.
Учені підрахували, що завдяки фотосинтезу продуценти щорічно створюють приблизно 160 млрд. т сухої органічної речовини, з якої 1/3 припадає на екосистеми Світового океану, а 2/3 — суходолу.
Відомо, що енергія далі разом з їжею надходить від рослин до рослиноїдних організмів, від них — до хижаків і т.д. Таким чином постійний коло-обіг речовин і потоки енергії забезпечують функціонування біосфери як єдиної цілісної екосистеми.
Жива речовина біосфери виконує різноманітні функції, пов'язані з процесами обміну речовин у живих організмах: газову, окиснювально-відновну, концентраційну.
Газова функція живої речовини полягає в тому, що живі істоти в процесі своєї життєдіяльності впливають на газовий склад атмосфери, Світового океану і ґрунту. Аеробні організми в процесі дихання поглинають із довкілля кисень і виділяють туди вуглекислий газ. Рослини і ціанобактерії в процесі фотосинтезу, навпаки, поглинають вуглекислий газ і виділяють кисень. Деякі організми (наприклад, певні групи бактерій) можуть впливати на концентрацію в довкіллі й інших газів (метану, сірководню, азоту тощо).
Окиснювально-відновна функція живої речовини полягає в тому, що за допомогою живих організмів у атмосферному повітрі, воді та ґрунті окислюються чи відновлюються певні хімічні сполуки. Наприклад, залізобактерії здатні окислювати сполуки заліза, денітрифікуючі — відновлювати нітрати і нітрити до молекулярного азоту чи його оксидів.
Концентраційна функція полягає у поглинанні живими істотами з довкілля і накопиченні у своєму організмі певних хімічних елементів. Так, молюски, форамініфери, десятиногі раки, хребетні тварини накопичують у своїх організмах сполуки кальцію; радіолярії і діатомові водорості — сполуки силіцію тощо.
3. Здійснення живою речовиною нашої планети своїх функцій пов'язане з міграцією атомів у процесі колообігу речовин у біосфері. В ній постійно відбувається колообіг усіх хімічних елементів, які входять до складу живих істот. Міграцію хімічних елементів з участю організмів називають біогенною (від грец. біос - життя), а ту, що відбувається поза ними - абіогенною (від грец. а — частинка, що означає заперечення, та біос).
Вода - найпоширеніша хімічна сполука в біосфері. Сумарні запаси води нашої планети становлять приблизно 1,5 млрд. км3. Ви пам'ятаєте, що вода може перебувати не лише в рідкому, а й у твердому (лід) чи газоподібному станах. Водяна пара надходить в атмосферу внаслідок випаровування з поверхні водойм, живими організмами тощо. З атмосфери вода випадає у вигляді дощу або снігу. Це може відбуватись поблизу місця випаровування або ж за тисячі кілометрів від нього. Перебування молекул води в атмосфері триває від кількох годин до тижнів.
У морях і океанах запас води поповнюється завдяки стокам річок, які в них впадають, і опадам. Морські течії переносять теплу або холодну воду на значні відстані, впливаючи на клімат певних ділянок суходолу; вода переміщується і завдяки течії річок. З нею пов'язані такі геологічні явища, як вимивання певних сполук, їхнє перенесення і відкладення.
Вода поглинається живими організмами і включається в їхній обмін речовин: реакції синтезу, гідролізу тощо. Організми виділяють воду в довкілля з продуктами обміну речовин, у процесі дихання, випаровування.
Відомо, що Оксиген відіграє в біосфері виняткову роль. Споживаючи кисень у процесі дихання, організми забезпечують свої енергетичні потреби. Але молекулярний кисень у надлишковій кількості небезпечний для живої матерії, оскільки здатний окислювати органічні сполуки клітини. Тому живі організми мають захисні системи, здатні зв'язувати вільний кисень. Атмосферний і розчинений у воді кисень здатний окислювати і неорганічні сполуки Землі.
Слід зазначити, що майже весь атмосферний кисень біогенного походження: він утворився внаслідок фотосинтезу, який здійснюють зелені рослини і ціанобактерії. Вміст кисню в нижніх шарах атмосфери становить приблизно 21% і знижується зі збільшенням висоти над рівнем моря. Частина молекулярного кисню атмосфери під дією ультрафіолетових сонячних променів і електричних розрядів перетворилася на озон, з якого сформувався озоновий екран.
Карбон, як відомо, входить до складу органічних сполук, що постійно синтезуються, перетворюються і розщеплюються всіма організмами. Автотрофи здатні засвоювати вуглекислий газ з атмосфери і синтезувати різноманітні органічні речовини, які згодом ланцюгами живлення передаються гетеротрофним організмам.
Карбон накопичується в живих організмах у вигляді синтезованих органічних сполук, а також солей карбонатної кислоти (переважно в скелетах або черепашках), а поза живими організмами - в органічних речовинах ґрунту, вуглекислому газі та різноманітних осадочних породах (мармур, вапняк, крейда тощо). На певний час Карбон, який міститься в цих сполуках, вилучається з біогенної міграції. Але внаслідок процесів життєдіяльності організмів (дихання, виділення тощо), біогенного розкладання мертвої органіки (процеси мінералізації, бродіння), хімічних перетворень осадочних порід (розчинення, вивітрювання) він знову включається в біогеохімічні процеси.
На колообіг Карбону впливає господарська діяльність людини. Розвиток промисловості, інтенсивне споживання енергоносіїв зумовлюють зростання концентрації вуглекислого газу в атмосфері. Масове вирубування лісів призводить до того, що рослинність Землі зв'язує меншу кількість атмосферного вуглекислого газу. Це порушує рівновагу в обміні сполуками карбону між живою речовиною нашої планети і оболонками Землі.
Вміст вільного газоподібного азоту в атмосфері становить приблизно 79%. З атмосфери азот надходить у ґрунт і водойми у вигляді оксидів і у складі інших сполук (аміаку тощо), які утворюються під впливом космічних променів, грозових розрядів та ін. Проте основна частина сполук нітрогену надходить у воду і ґрунт завдяки фіксації атмосферного азоту прокаріотами (азотфіксуючі бактерії, деякі ціанобактерії).
Нітроген у складі хімічних сполук, які можуть бути використані живими організмами, називають фіксованим. Фіксований нітроген з ґрунту зелені рослини можуть засвоювати або безпосередньо, або завдяки симбіозу з бульбочковими бактеріями. Зі сполук нітрогену рослини синтезують амінокислоти, з яких складаються білки. Далі нітрогенвмісні органічні сполуки передаються ланцюгами живлення. В організмах складні сполуки нітрогену розщеплюються до простих (аміак, сечовина, сечова кислота, гуанін тощо) і виділяються в довкілля з видихуваними газами, потом, сечею, екскрементами.
Складні органічні сполуки нітрогену (білки, нуклеїнові кислоти) надходять у навколишнє середовище із рештками організмів. Вони розкладаються редуцентами, які здійснюють денітрифікацію — процес відновлення нітритів або нітратів до газоподібних сполук - молекулярного азоту (N2) чи двооксиду нітрогену (NO2). Інші мікроорганізми забезпечують процеси нітрифікації, завдяки яким іони амонію (NH4 ) окиснюються до нітритів (NO2), а останні — до нітратів (N03). Так, завдяки діяльності редуцентів нітрогеновмісні органічні сполуки розкладаються до простих, і колообіг Нітрогену в біосфері поновлюється.
4. Живі організми беруть участь у процесах відкладання осадочних порід, ґрунтоутворенні, формуванні атмосфери. Таким чином, вони активно впливають на формування оболонок Землі.
Осадочні породи формуються на дні водойм внаслідок нашарувань різних нерозчинних сполук переважно біогенного походження. У створенні осадочних порід беруть участь ті живі істоти, які накопичують протягом усього життя в своїх скелетах, черепашках, панцирах тощо сполуки кальцію, кремнію, фосфору та інші. Із залишків цих організмів (діатомових водоростей, форамініфер, радіолярій, молюсків, коралових поліпів та ін.) виникають різноманітні осадочні породи (вапняк, крейда, кремнезем, діатоміти, радіолярити) значної товщини.
Поклади крейди і вапняків утворювалися протягом усього періоду історичного розвитку біосфери. Внаслідок накопичення на дні морів черепашок і скелетів відмерлих організмів утворюється вапняковий мул. У його товщі відбуваються хімічні процеси, які в умовах підвищеного тиску зумовлюють утворення крейди чи вапняку. Геологічні процеси, що відбувалися на нашій планеті, приводили до того, що ті або інші частини материків опускалися, а певні ділянки морського дна піднімалися. Внаслідок цього відбувався перерозподіл площі суходолу й гідросфери, а також виникали гірські хребти з вапняку (Піренеї, Альпи, Гімалаї, Кавказькі гори тощо).
У накопиченні кремнеземових осадочних порід брали участь радіолярії і діатомові водорості. Радіолярити (осадочні породи, утворені переважно з внутрішньоклітинних скелетів радіолярій) представлені крем'яними глинами, родовищами напівкоштовних каменів (яшми, опала, халцедона). Переважно з радіоляритів утворений острів Барбадос у Карибському морі. Поклади фосфоритів і апатитів (солі фосфатних кислот, які використовують як добрива і сировину для промисловості) утворені рештками особливих груп морських тварин, що мали черепашки з фосфату кальцію.
Кам'яне (з решток викопних вищих спорових рослин), буре (викопних голонасінних) вугілля і торф (з решток мохоподібних) утворилися за особливих умов відповідного періоду. Поклади залізної руди формувалися протягом усього існування біосфери внаслідок життєдіяльності хемотрофних залізобактерій. Є гіпотези щодо біогенного походження нафти, природного газу та інших корисних копалин.
Живі організми беруть участь і в процесах руйнування гірських порід. Наприклад, лишайники, оселяючись на скелях, виділяють органічні кислоти, які руйнують мінерали. Лишайники та інші організми можуть руйнувати гірські породи і механічним впливом. Наприклад, гіфи грибів, які входять до складу лишайника, корені та ризоїди рослин проникають у тріщини скель, розширюючи їх. Це, у свою чергу, сприяє проникненню в ці тріщини води, що призводить до розчинення гірських порід, які стають крихкими і руйнуються.
Без різноманітного світу живих істот, які населяють ґрунт, його формування було б неможливе. А відсутність ґрунту унеможливила б формування і функціонування наземних біогеоценозів.
Вплив мешканців ґрунту, а також вітру, води, повітря і кліматичних факторів забезпечує перебіг процесів ґрунтоутворення. Під час цих процесів відбуваються складні перетворення і переміщення різноманітних сполук у верхньому шарі літосфери. Процеси ґрунтоутворення сприяють збереженню і підвищенню родючості ґрунтів — здатності забезпечувати потреби рослин в елементах живлення, воді, а також кисні, необхідному для дихання їхніх підземних частин.
Мешканці ґрунту впливають на його фізичні, хімічні й біологічні властивості. Так, кореневі системи рослин поліпшують його шпаристість, що впливає на надходження в ґрунт кисню, розчинів солей. Живі та відмерлі підземні частини рослин збагачують ґрунт органікою, слугують кормовою базою для ґрунтових тварин, грибів, бактерій. Деякі з мікроорганізмів, які мешкають у ґрунті у вільному стані або вступають у симбіоз з вищими рослинами (азотфіксуючі бактерії, ціанобактерії, деякі водорості), як вам вже відомо, здатні фіксувати атмосферний азот і збагачувати ним ґрунт, підвищуючи його родючість. На структуру і родючість ґрунтів впливає і діяльність певних груп тварин (дощові черв'яки, комахи, кроти, сліпаки): прокладаючи ходи в ґрунті, вони поліпшують його шпаристість. Тварини також збагачують ґрунт органікою і разом з грибами і бактеріями забезпечують процеси мінералізації (тобто розкладають органіку до неорганічних сполук, які здатні засвоювати рослини).
Рештки організмів (насамперед рослин), потрапляючи на поверхню ґрунту, утворюють шар підстилки. У підстилці за активної участі живих організмів одночасно відбуваються як процеси мінералізації, так і синтезу органічних речовин, що входять до складу гумусу. В утворенні гумусу беруть участь різні організми: безхребетні тварини, гриби, бактерії. Отже, запаси гумусу в ґрунті — це результат різноманітних процесів синтезу, розкладання і накопичення органічних речовин, переважно рослинного походження.
На початку утворення біосфери газовий склад атмосфери значно відрізнявся від сучасного: в ній було багато водяної пари, вуглекислого газу, аміаку, сірководню, метану, проте не було вільного кисню та озонового екрана. Тому сонячні ультрафіолетові промені легко сягали поверхні Землі. Внаслідок цього життя тривалий час могло існувати лише у водному середовищі, оскільки вода поглинає ці промені. Але завдяки діяльності фото-синтезуючих ціанобактерій газовий склад атмосфери поступово змінювався: знижувалася концентрація аміаку, вуглекислого газу, метану тощо; з'явився вільний кисень. Приблизно 2—3 млрд. років тому його концентрація в атмосфері досягла сучасної, завдяки чому сформувався озоновий екран. Це створило передумови виходу життя на суходіл.
Атмосферний кисень має фотосинтетичне походження. Рослинність Землі щорічно поглинає приблизно 1,7*108 тонн вуглекислого газу і виділяє майже 1,2*108 тонн кисню, який використовують у процесі дихання аеробні організми. Проте на співвідношення вмісту в атмосфері кисню і вуглекислого газу негативно впливає господарська діяльність людини (забруднення атмосфери промисловими викидами, інтенсивне спалювання енергоносіїв тощо), яка призводить до зниження в атмосфері концентрації кисню і підвищення вуглекислого газу. Внаслідок цього виникає так званий тепличний ефект: висока теплоємність вуглекислого газу зменшує випромінювання тепла поверхнею Землі, що зумовлює глобальне потепління клімату. Вуглекислий газ виділяється і в процесі дихання організмів, а також внаслідок розкладання органічної речовини живими істотами.
Організми впливають і на концентрацію в атмосфері азоту. Він зв'язується азотфіксуючими бактеріями, ціанобактеріями, а повертається в атмосферу в результаті процесів розщеплення органічних сполук або денітрифікації переважно у вигляді аміаку. Діяльність організмів сприяє надходженню в атмосферу сірководню, метану та деяких інших газів.
|