План:
1. Сучасні уявлення про ген та основні генетичні поняття.
2. Методи генетичних досліджень.
3. Закономірності спадковості, встановлені Г. Менделем.
Література: Загальна біологія: Підруч для 11 кл./ М.Є. Кучеренко та інш. 2006. с. 40-45
1. Здатність організмів зберігати спадкові ознаки й передавати їх нащадкам, а також набувати нових ознак і їхніх станів у процесі індивідуального та історичного розвитку виду є загальнобіологічним явищем.
Яка наука вивчає явища спадковості та мінливості? Закономірності спадковості та мінливості організмів досліджує наука генетика (від грец. ге-незіс). Це відносно молода біологічна наука.
Як вам відомо, елементарною одиницею спадковості є ген (від грец. генос — рід) — ділянка молекули нуклеїнової кислоти, яка визначає спадкові ознаки організмів. Ген кодує первинну структуру молекули білка, РНК певного типу або ж взаємодіє з регуляторним білком. Прикладами спадкових ознак є колір очей або волосся, зріст, форма плодів. Відомо, що у різних людей колір очей чи волосся може бути різним, різною може бути і форма плодів рослин певного виду. Це свідчить про те, що певні гени можуть перебувати у різних станах. Такі різні стани одного гена називають алелями, або алельними генами (від грец. аллелон — взаємно). Алельні гени займають однакове положення в хромосомах однієї пари (гомологічних хромосомах) і визначають різні стани певних ознак (наприклад, високий чи низький зріст, рудий, або чорний колір волосся, блакитний або зелений колір очей).
В особин певного виду алельні гени можуть бути у різних поєднаннях. Якщо організм диплоїдний (тобто кожна хромосома має парну), то він може мати або дві однакові алелі певного гена, або різні. Але коли алелі різні, який саме стан ознаки проявиться? У багатьох випадках проявляється стан ознаки, зумовлений лише однією з двох різних алелей, а інший наче зникає. Алель, яка завжди проявляється в присутності іншої у вигляді певного стану ознаки, називається домінантною (від лат. домінантіс - панівний), а та, що не проявляється - рецесивною (від лат. рецессус - відступ, видалення). Явище пригнічення прояву \ однієї алелі іншою називають домінуванням. Наприклад, у помідорів алель, яка визначає червоне забарвлення плодів, домінує над алеллю жовтого; у людини алель, яка визначає карий колір очей, домінує над алеллю блакитного. Домінантні алелі позначають великими літерами латинського алфавіту (А, В, С, D тощо), а відповідні їм рецесивні — малими (а, b, с, d тощо).
Певний ген може бути представлений не лише двома алелями, а й більшою кількістю (десятками і навіть сотнями). При цьому слід пам'ятати, що в диплоїдних клітинах одночасно наявні дві алелі певного гена, а в гаплоїдних - лише одна.
Сукупність генетичної інформації, закодованої в генах окремої клітини або цілого організму, називають генотипом (від грец. генос і типос - відбиток). Унаслідок взаємодії генотипу з чинниками навколишнього середовища формується фенотип (від грец. фаіно - являю, виявляю), тобто сукупність усіх ознак і властивостей організму.
Отже, предмет генетичних досліджень — це явища спадковості та мінливості організмів. Спадковість - здатність живих організмів передавати свої ознаки і особливості індивідуального розвитку нащадкам. Завдяки цій властивості живих істот забезпечується генетичний зв'язок між різними поколіннями організмів. Натомість, мінливість - здатність живих організмів набувати нових ознак і їхніх станів у процесі індивідуального розвитку.
Спадковість і мінливість - це протилежні властивості живих організмів. Завдяки спадковості нащадки подібні до батьків, тобто зберігається стабільність біологічних видів. Мінливість забезпечує появу нових ознак та їхніх станів, завдяки чому утворюються нові види і відбувається історичний розвиток біосфери в цілому.
2. Генетичні дослідження обіймають чимало різних питань: вивчення матеріальних носіїв спадкової інформації — генів, закономірностей її збереження і передачі нащадкам; з'ясування залежності прояву спадкової інформації у фенотипі від дії певних умов довкілля; причин змін спадкової інформації і механізмів їхнього виникнення; дослідження генетичних процесів, які відбуваються в популяціях організмів, і багато інших.
Залежно від рівня організації живої матерії в генетиці застосовують і відповідні методи досліджень.
Гібридологічний метод полягає у схрещуванні (гібридизації) організмів, які відрізняються певними станами однієї або кількох спадкових ознак. Нащадків, одержаних від такого схрещування, називають гібридами (від грец. гібрида - суміш), а сам процес, в основі якого лежить об'єднання різного генетичного матеріалу в одній особині (клітині), -гібридизацією. За допомогою системи схрещувань дослідники можуть встановити характер успадкування певних станів ознак у ряду поколінь нащадків.
Генеалогічний (від грец. генеалогія — родовід) метод полягає у вивченні родоводів організмів. Він дає можливість простежити характер успадкування різних станів певних ознак у різних поколіннях. Цей метод широко застосовують у медичній генетиці, селекції тощо. За його допомогою визначають генотип особин і вираховують імовірність прояву того чи іншого стану ознаки у майбутніх нащадків.
Популяційно-статистичний метод дає можливість вивчати частоти зустрічальності різних алелей та їхніх поєднань у популяціях організмів, а також генетичну структуру популяцій. Цей метод також застосовують у медичній генетиці для вивчення поширення певних алелей (переважно тих, які визначають ті чи інші спадкові захворювання) серед окремих груп населення. Для цього вибірково досліджують частину населення певної території і статистичне обробляють одержані результати.
Цитогенетичний метод ґрунтується на вивченні особливостей хромосомного набору (каріотипу) організмів. Застосування цього методу дає змогу виявляти мутації, пов'язані зі змінами кількості хромосом і будови окремих із них.
Каріотип досліджують у клітинах на стадії метафази, оскільки в цей період клітинного циклу структура хромосом виражена найчіткіше.
Близнюковий метод полягає в дослідженні одно-яйцевих близнят (тобто організмів, які сформувалися з однієї зиготи). Однояйцеві близнята завжди однієї статі й мають однаковий генотип. Досліджуючи такі організми, можна вивчити роль чинників довкілля у формуванні фенотипу: різний характер їхнього впливу визначає і розбіжності в прояві тих чи інших станів певних ознак.
Особливу групу становлять методи генетичної інженерії, за допомогою яких учені змінюють генотипи організмів: видаляють або перебудовують певні гени, вводять гени в геном іншої клітини або організму тощо. Геном — це сукупність генів гаплоїдного набору хромосом організмів певного виду. Крім того, дослідники можуть поєднувати в генотипі однієї особини гени різних видів.
Результати генетичних досліджень слугують теоретичним підґрунтям для вирішення різних практичних задач. Так, сучасна селекція (наука про створення нових порід і сортів організмів та поліпшення якостей створених раніше) враховує дані генетичних наслідків різних систем схрещування організмів, вплив штучного добору на спадкові ознаки, роль чинників довкілля у формуванні ознак тощо. Основні напрями досліджень медичної генетики — профілактика і лікування спадкових захворювань, дослідження факторів, які спричиняють зміни у генотипі людини.
3. Основні закономірності спадковості встановив видатний чеський учений Грегор Мендель.
Свої досліди Г. Мендель провів на рослині з родини Бобові — горосі посівному. Він виявився вдалим об'єктом для проведення генетичних досліджень. По-перше, відомо багато сортів цієї культурної рослини, які відрізняються різними станами певних спадкових ознак (забарвленням насіння, квіток, довжиною стебла, структурою поверхні насіння тощо). По-друге, життєвий цикл гороху досить короткий, що дає можливість простежити передачу спадкової інформації нащадкам протягом багатьох поколінь. По-третє, горох посівний — самозапильна рослина, тому нащадки кожної особини, яка розмножувалась самозапиленням, є чистими лініями. Чисті лінії - це генотипна однорідні нащадки однієї особини, гомозиготні за більшістю генів і одержані внаслідок самозапилення або самозапліднення. Гомозиготною (від грец. гомос — однаковий і зиготос — сполучений разом) називають диплоїдну або поліплоїдну клітину (особину), гомологічні хромосоми якої несуть однакові алелі певних генів. Але слід зазначити, що горох посівний можна запилювати і перехресне. Це дає можливість здійснювати гібридизацію різних чистих ліній.
Схрещуючи чисті лінії гороху між собою, Г. Мендель одержав гетерозиготні (гібридні) форми. Гетерозиготною (від грец. гетерос — інший і зиготос) називають диплоїдну або поліплоїдну клітину (особину), гомологічні хромосоми якої несуть різні алелі певних генів. Отже, Г. Мендель застосував гібридологічний метод досліджень. На відміну від своїх попередників він чітко визначав умови проведення дослідів: серед різноманітних спадкових ознак виділяв різні стани однієї (ліоногібридне схрещування), двох (дигібридне) або більшої кількості (полігібридне) ознак і простежував їхній прояв у ряді наступних поколінь. Результати досліджень він обробляв статистичне, що дало можливість встановити закономірності передачі різних станів спадкових ознак у ряді поколінь гібридів. Попередники Г. Менделя намагалися простежити успадкування різних станів усіх ознак досліджуваних організмів одночасно, тому їм і не вдалося виявити будь-які закономірності.
Свої дослідження Г. Мендель почав із моногібридного схрещування: він схрестив дві чисті лінії гороху посівного, які давали відповідно насіння жовтого або зеленого кольору (батьківські форми умовно позначають латинською літерою Р - від лат. парентес - батьки). Насіння, яке утворювали нащадки, одержані від такого схрещування (гібриди першого покоління: F1 — від лат. філії— сини), виявилося одноманітним - жовтого кольору. Так був встановлений закон одноманітності гібридів першого покоління: у фенотипі гібридів першого покоління проявляється лише один із двох станів ознаки - домінантний.
Потім Г. Мендель схрестив між собою гібриди першого покоління, їхні нащадки (гібриди другого покоління - F2) дали 8 023 насінини, з яких 6 022 були жовтого кольору, а 2 001 — зеленого. Тож серед насіння гібридів другого покоління знову з'явилися насінини зеленого кольору (проявився рецесивний стан ознаки), які становили приблизно 1/4 загальної кількості насіння, тоді як насіння жовтого кольору (домінантний стан ознаки) було близько 3/4.
Цю закономірність названо законом розщеплення: при схрещуванні гібридів першого покоління між собою серед їхніх нащадків спостерігається явище розщеплення ознак: у фенотипі 1/4 гібридів другого покоління проявляється рецесивний, а 3/4 — домінантний стани ознак. Розщеплення — прояв обох станів ознаки (домінантного і рецесивного) у другому поколінні гібридів, зумовлений розходженням алельних генів, які їх визначають.
Г. Мендель простежив за успадкуванням домінантного та рецесивного станів ознак і в наступних поколіннях гібридів. Він звернув увагу на той факт, що з насіння зеленого кольору виростали рослини, які при самозапиленні утворювали насіння лише зеленого кольору, тоді як рослини, що виросли з насіння жовтого кольору «поводили себе» по-різному. Одна частина цих рослин при самозапиленні утворювала насіння лише жовтого кольору (1/3 від кількості рослин, які виросли з жовтого насіння), тоді як інша (2/3 цих рослин) — насіння як жовтого, так і зеленого кольорів у співвідношенні 3:1. Г. Мендель дійшов висновку, що насіння з домінантним станом ознаки (жовтого кольору), хоча й подібне за фенотипом, але може розрізнятись за генотипом. Натомість, насіння, у фенотипі якого проявився рецесивний стан ознаки (зелений колір), подібне і за генотипом. Отже, все насіння з рецесивним станом ознаки було гомозиготне за геном забарвлення насіння. А серед насінин з домінантним станом ознаки траплялися як гомозиготні, так і гетерозиготні (мали дві різні алелі гена забарвлення насіння).
У подальших дослідженнях Г. Мендель ускладнив умови проведення досліду: вибрав рослини, які відрізнялися різними станами двох (дигібридне схрещування) або більшої кількості (полігібридне схрещування) спадкових ознак. Так він схрестив між собою чисті лінії гороху посівного, представники яких формували жовте насіння з гладенькою поверхнею та зелене зі зморшкуватою. Гібриди першого покоління утворювали лише насіння жовтого кольору з гладенькою поверхнею (домінантні стани обох досліджуваних ознак). Так Г. Мендель спостерігав прояв закону одноманітності гібридів першого покоління.
Схрестивши гібриди першого покоління між собою, Г. Мендель одержав такі результати. Серед гібридів другого покоління виявилися чотири фенотипні групи в таких співвідношеннях: приблизно дев'ять частин насіння було жовтого кольору з гладенькою поверхнею (315 насінин), три частини — жовтого кольору зі зморшкуватою поверхнею (101 насінина), ще три частини — зеленого кольору з гладенькою поверхнею (108 насінин), а одна частина - зеленого кольору зі зморшкуватою поверхею (32 насінини). Отже, кількість фенотипних груп насіння, яке утворювали гібриди другого покоління вдвічі перевищило їхню кількість у вихідних батьківських форм. Крім насіння, яке мало комбінації станів ознак, притаманних батьківським формам (жовтий колір — гладенька поверхня та зелений колір - зморшкувата поверхня), з'явилися ще дві фенотипні групи, з новими комбінаціями (жовтий колір - зморшкувата поверхня та зелений колір — гладенька поверхня).
Щоб пояснити ці результати, Г. Мендель простежив успадкування різних станів кожної ознаки окремо. Співвідношення насіння різного кольору гібридів другого покоління було таким: 12 частин насіння мало жовтий колір, а 4 — зелений, тобто розщеплення за ознакою кольору, як і при моногібридному схрещуванні становило 3:1. Подібне спостерігали і при розщепленні за ознакою структури поверхні насіння: 12 частин насіння мало гладеньку поверхню, а 4 — зморшкувату. Тобто розщеплення за ознакою структури поверхні насіння також було 3:1.
На підставі одержаних результатів Г. Мендель сформулював закон незалежного комбінування станів ознак: при ди- або полігібридному схрещуванні розщеплення за кожною ознакою відбувається незалежно від інших. Тобто дигібридне схрещування за умови, що один із алельних генів повністю домінує над іншим, е по суті двома моногібридними, які ніби накладаються одне на одне, тригібридне — три і т.д.
|